Symplectic Involutions of K 3 Surfaces Act Trivially on CH 0 Claire Voisin

نویسندگان

  • Claire Voisin
  • Gavril Farkas
چکیده

A symplectic involution on a K3 surface is an involution which preserves the holomorphic 2-form. We prove that such a symplectic involution acts as the identity on the CH0 group of the K3 surface, as predicted by Bloch’s conjecture. 2010 Mathematics Subject Classification: 14C25, 14J28

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symplectic involutions of K 3 surfaces act trivially on CH 0

For a smooth complex projective variety X, Mumford has shown in [9] that the triviality of the Chow group CH0(X), i.e. CH0(X)hom = 0, implies the vanishing of holomorphic forms of positive degree onX. An immediate generalization is the fact that a 0-correspondence Γ ∈ CH(Y ×X), with d = dimX, which induces the 0-map Γ∗ : CH0(Y )hom → CH0(X)hom has the property that the maps Γ∗ : H(X) → H(Y ) va...

متن کامل

ec 1 99 5 Non - symplectic involutions of a K 3 surface

Let S be a smooth minimal K3 surface defined over C , G a finite group acting on S. The induced linear action of G on H 0 (ω S) ∼ = C leads to an exact sequence 1 −→ K −→ G −→ N −→ 1 , where the non-symplectic part N is a cyclic group Z m , which acts on the intermediate quotient S/K which is also K3. It is well-known that the Euler number ϕ(m) of m must divide 22 − ρ(S) ([N], Corollary 3.3), i...

متن کامل

ar X iv : 0 80 7 . 37 08 v 2 [ m at h . A G ] 4 S ep 2 00 8 K 3 surfaces with non - symplectic automorphisms of 2 - power order

This paper concerns complex algebraic K3 surfaces with an automorphism which acts trivially on the Néron-Severi group. Complementing a result by Vorontsov and Kondō, we determine those K3 surfaces where the order of the automorphism is a 2-power and equals the rank of the transcendental lattice. We also study the arithmetic of these K3 surfaces and comment on mirror symmetry.

متن کامل

Rational equivalence of 0-cycles on K3 surfaces and conjectures of Huybrechts and O’Grady

We give a new interpretation of O’Grady’s filtration on the CH0 group of a K3 surface. In particular, we get a new characterization of the canonical 0-cycles kcX : given k ≥ 0, kcX is the only 0-cycle of degree k on X whose orbit under rational equivalence is of dimension k. Using this, we extend results of Huybrechts and O’Grady concerning Chern classes of simple vector bundles on K3 surfaces.

متن کامل

A symplectic analog of the Quot scheme

Article history: Received 16 June 2015 Accepted after revision 11 September 2015 Available online 20 October 2015 Presented by Claire Voisin

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012